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Abstract
The effect of confinement on the positional ordering is examined in a system of parallel hard
cylinders using the second virial theory of Onsager. Hard cylinders are arranged in a slit-like
pore (two parallel planar hard walls) in such a way that the long axes of the particles are
perpendicular to the surface of confining hard walls. We have incorporated the theories of the
bulk and the confined systems into a single formalism, where a wi j kernel function provides the
link between the bulk and confined systems. It is shown that the presence of hard walls inhibits
the second order nematic–smectic A phase transition irrespective of the value of the
wall-to-wall separation. Instead, due to accommodation problems of the cylinders into the pore,
an infinite number of first order layering phase transitions appears. Coexisting curves,
corresponding to the equilibrium between two phases having n and n + 1 smectic-like periods,
are bounded with lower critical points. The gap between the average densities of the coexisting
phases shrinks with increasing pore width, while the properties of the critical points
monotonically move towards those of the nematic–smectic A phase transition of the bulk
system (d → ∞). The effect of only one hard wall is related to the bulk nematic–smectic A
phase transition since a critical wetting transition of the wall induced layering takes place.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Bulk and confined systems of mesogenic molecules show very
interesting phase behaviour. It is now well understood that
the anisotropic hard body interactions can alone give rise to
the formation of mesophases such as the nematic, smectic and
columnar phases [1, 2]. Extensive simulation studies of the
system of hard spherocylinders [3, 4] have shown that the
stability of mesophases depends on the shape anisotropy of
the molecule. For example, more elongated particle shape is
required to stabilize the nematic phase than the smectic one.
The presence of a substrate or confining walls may strongly
affect the stability and the structure of mesophases due to the
interplay between adhesive and cohesive forces. Depending
on the wall–particle interaction, the wall can either induce
homeotropic or planar anchoring at the wall. The presence
of a substrate not only affects the structure of isotropic,
nematic and more ordered mesophases, but it also induces
surface transitions and consequently leads to a complex phase

behaviour including wetting and layering transitions. For
instance, the isotropic–nematic transition of an anisotropic
fluid can be shifted with respect to the bulk depending on
the pore width confining the fluid [5]. This is an analogy to
the capillary condensation/evaporation phenomena well known
from the theory of simple liquids. To get an insight into
these interesting phenomena of liquid crystals, the theoretical
and simulation studies of mesogenic hard body fluids in a
confining slit-like pore can provide very useful information.
To understand the physics of confined liquid crystals is of
fundamental interest but it plays also an important role in
technology, mainly for the application of the material in liquid
crystal displays.

Molecular studies of anisotropic fluids in the presence
of a solid substrate are devoted mainly to the isotropic and
nematic phases where the presence of a single planar hard
wall and two parallel hard walls are considered [6–10]. The
first comprehensive theoretical study of confined hard rods
is due to van Roij et al [6]. Restricting the orientations of

0953-8984/10/175002+12$30.00 © 2010 IOP Publishing Ltd Printed in the UK & the USA1

http://dx.doi.org/10.1088/0953-8984/22/17/175002
http://stacks.iop.org/JPhysCM/22/175002


J. Phys.: Condens. Matter 22 (2010) 175002 A Malijevský and S Varga

the particles into three orthogonal directions the existence of
three phenomena are proved: (1) an uniaxial–biaxial nematic
surface phase transition, (2) a wetting transition by a nematic
film at the wall–isotropic fluid interface and (3) an isotropic–
nematic capillary phase transition. In a subsequent study,
the MC simulation of freely rotating hard spherocylinders [7]
confirms the above findings and shows that the capillary
isotropic–nematic transition terminates at a wall separation
which is about twice the length of the rod. More recent
theoretical studies go beyond the Zwanzig approximation and
deal with freely rotating hard anisotropic bodies such as the
hard Gaussian [8] and thin plates [9, 10]. In the very recent
study of de las Heras et al [11] more complicated surface phase
phenomena are observed in the system of freely rotating hard
spherocylinders due to the presence of conflicting walls.

Much less attention has been paid to the smectic phase,
which can be considered as a repetition of 2D nematic
layers, and to the nematic–smectic A (N–S) phase transition
in the presence of an external field. This may be due
to the fact that the smectic phase occurs in very dense
systems, where it is difficult to perform both simulation
and theoretical studies. The proper sampling of the phase
space is a problem in simulation studies, while one has
to use a very fine grid size for the accurate representation
of the position and orientation dependent one-body density
distribution in theoretical methods. We are aware of the DFT
studies of de las Heras et al [12–14] for the confined smectic
phase, where a trial function method is used for the proper
representation of the density distribution. They observed
both capillary nematization and smectization and layering
transitions between two smectic-like phases having n and n+1
periods, respectively. Simulation studies of plate-like and
rod-like particles focused mainly on the determination of the
capillary nematization line [7, 10]. Steuer et al [15] examined
the stability of isotropic, nematic and smectic ordering in
the presence of confinement, using MC simulations. They
observed strong stabilization of positional order with respect to
isotropic and nematic phases, both in the case of homeotropic
and planar anchoring mechanisms. The only weakness of [15]
is that the effect of varying pore width was not considered.

In our present study we contribute to the topic of confined
nematic and smectic phases by studying the fluid of parallel
hard cylinders in the presence of a single wall and narrow
slit-like pore confinements. The drawback of the parallel
approximation is that we neglect the effect of orientational
entropy on the ordering behaviour, i.e. the capillary isotropic–
nematic phase transition cannot be studied. However, we can
examine the nematic and smectic phases with significantly less
computational effort. The concept of studying the nematic and
smectic phases of hard body systems in the perfect alignment
limit goes back to Hosino et al [16]. Using Onsager’s second
virial theory and a square-wave trial function for the density
distribution they point out that the system of parallel hard
rods undergoes a N–S phase transition. The exact analysis
of the N–S transition of parallel rods is due to Mulder [17].
The main result of [17] is that Onsager theory predicts a
second order N–S phase transition at a packing fraction η ≈
0.575 and the smectic period of the N–S boundary is about

1.4 times the length of the rod. The MC simulation study
of Veerman and Frenkel [18] located the transition point
at about η ≈ 0.44, which means that the Onsager theory
overestimates the stability of the nematic phase. It is worth
mentioning that the recently developed fundamental measure
theory (FMT) of parallel hard cylinders [19] gives a very
reliable equation of state both in the nematic and smectic
phases, but it underestimates the N–S transition density.
Since the Onsager theory of parallel rods is simple and has
proved to be very successful for many systems, such as
the mono- and polydisperse liquid crystals [20, 21], and in
addition the agreement between FMT and Onsager theory
is quite good, we apply the latter for the system of hard
cylinders confined between two parallel hard walls. We assume
homeotropic alignment for the rods’ orientations at the walls,
which can be achieved in practice by either a very strong
external field or by a very low homeotropic anchoring energy.
Apart from the fundamental importance, understanding the
structure and phase behaviour of a confined anisotropic fluid
is also a prerequisite for the targeted applications in the liquid
crystal display industry. A very detailed discussion of both
conventional and new alignment techniques at the substrates,
such as the submicrometre grooving and photo-alignment, as
well as the relevance of various alignment methods used in the
liquid crystal display technology are given in the recent review
of Ishihara [22].

The main goal of our work is to examine the phase
behaviour in the following cases: (i) bulk system, i.e. the
system is in the absence of any external field, (ii) semi-infinite
system, considering a system with a plane hard wall, and
(iii) confined system, where the system is squeezed by two
parallel hard walls. In section 2 we re-examine the Onsager
theory and we formulate the corresponding density functional
in a compact way applicable for both bulk and inhomogeneous
systems. In section 3 we discuss our results with the accent on
the following problems: does the N–S phase transition detected
in bulk persist for the cases of (ii) and (iii)? If so, what is the
order of the phase transitions? Do any new phenomena occur
if one or two walls are present? What is the phase diagram
of the confined system where two free parameters (pore width
and the chemical potential) exist? Finally, in section 4 we give
some concluding remarks.

2. Onsager theory of aligned hard rods in the bulk
phase and in the presence of confinement

We examine very dense systems of hard cylinders, where the
particles’ long axes can in a good approximation be considered
to be parallel so that all their orientational degrees of freedom
are suppressed. First the nematic and smectic bulk properties
of the orientationally frozen system of hard cylinders are
revisited and secondly the effects of a single flat wall and two
parallel flat walls are studied. We assume that the long axis
of the hard cylinder is perpendicular to the surface of the hard
walls, which means that the case of homeotropic anchoring is
examined.
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Our starting thermodynamic function for both bulk and
confined systems is the grand potential functional:

β�[ρ(�r)] = β F[ρ(�r)] +
∫

d�r ρ(�r){φ(�r) − βμ}, (1)

where β is the inverse temperature, F is the intrinsic free
energy functional, μ is the chemical potential, φ(�r) is the
external potential and ρ(�r) is the local number density. The
ideal contribution to the free energy functional is given exactly
by

β Fid[ρ(�r)] =
∫

d�r ρ(�r){ln(ρ(�r)) − 1}, (2)

where the de Broglie term is not included, because it does
not have effect on the phase behaviour of the system. The
excess free energy functional is approximated by the second
viral contribution of the virial series

β Fex[ρ(�r)] = − 1
2

∫
d�r1 ρ(�r1)

∫
d�r2 ρ(�r2) fM(�r12), (3)

where the Mayer function, fM, of the hard cylinders with
diameter D and length L can be written as a product of two
Heaviside functions as follows:

fM(�r) = −θ(D − r⊥)θ(L − |z|). (4)

In equation (3) it is assumed that the cylinder’s long axis is
parallel to the z-axis of the chosen coordinate frame and r⊥ =
|�r⊥| denotes the distance between two particles in the x–y
plane. Since we are dealing with the perfectly ordered nematic
and the layered (smectic) phases along the z-axis, the local
density depends only on the z-coordinate, i.e. ρ(�r) = ρ(z).
For this reason the integrations of the grand potential with
respect to �r⊥ can be performed analytically. In the bulk nematic
phase the local density is just a constant, while the bulk smectic
phase has a periodic structure along the z-axis. Taking d to be
the smectic period (layer spacing), the local number density
has to satisfy the periodic condition ρ(z) = ρ(z + d). For this
reason it is sufficient to determine the structure of the smectic
phase for only one period (e.g. 0 < z < d). The slit pore
breaks the symmetry of the nematic and smectic phases and
gives rise to a non-uniform layered structure. To make a formal
connection between the grand potential of the confined system
and that of the bulk system we define an external potential
acting on the centre of the hard cylinder as follows:

φ(z) =

⎧⎪⎨
⎪⎩

∞, z < 0

0, 0 < z < d

∞, z > d,

(5)

where d now means the wall-to-wall separation. In order to
avoid confusion we mention here that in the case of the bulk
calculation the wall–particle potential is zero everywhere and
d denotes the smectic period. We use the above wall–particle
definition in the sense that the walls are located at z = 0 and
z = d , respectively, and the particles interact with the walls
such that the particles’ centres feel infinite repulsive potentials
at the positions of the walls. Note that we can use the same
wall–particle external potential even if hard body interactions

take place between the walls and the hard cylinders. Only
the positions of the walls should be placed to z = −L/2
and z = d + L/2, respectively. We will see later that our
definition of the external potential and the two meanings of the
d variable permit a unified density functional formalism for
bulk and confined systems. Taking into account that the density
is only nonzero for 0 < z < d in the confined system and that
the bulk density is periodic in d , the ideal part of the free energy
functional can be written as a one-dimensional integral:

β Fid

V
[ρ(z)] = 1

d

∫ d

0
dz ρ(z){ln(ρ(z)) − 1}. (6)

Combining equations (4) and (3), the excess free energy
density functional of both bulk and confined systems can be
expressed as

β Fres

V
[ρ(z)] = D2π

2d

∫ d

0
dz1 ρ(z1)

∫ z1+b(z1)

z1−a(z1)

dz2 ρ(z2), (7)

where a(z) = L and b(z) = L in the bulk system, while

a(z) =
{

z, 0 < z < L

L, z > L
and

b(z) =
{

L, 0 < z < d − L

d − z, d − L < z < d

in the slit pore. In the derivation of equation (7) we have
used that ρ(z) = 0 for z < 0 and z > d in the slit pore,
and ρ(z) = ρ(z + d) in the bulk smectic A phase. Based
on equations (6) and (7) the final form of the grand potential
density, ω = β�

V , is

ω[ρ(z)] = 1

d

∫ d

0
dz ρ(z){ln(ρ(z)) − 1} + D2π

2d

∫ d

0
dz1 ρ(z1)

×
∫ z1+b(z1)

z1−a(z1)

dz2 ρ(z2) − βμ
1

d

∫ d

0
dz ρ(z). (8)

The equilibrium structure of the system is determined by that
density profile, which minimizes the grand potential functional
of the system, i.e. δω

δρ(z) = 0. The resulting Euler–Lagrange
equation for confined and bulk systems is

ρ(z) = exp[βμ] exp

[
−D2π

∫ z+b(z)

z−a(z)
dz1 ρ(z1)

]
. (9)

This equation is self-consistent for the equilibrium density
distribution and can be solved by using standard iteration
methods. In this work we solve the above equations and
evaluate the grand potential by two methods. In the first
method we perform all integrations numerically and use
Picard’s iteration method, while in the second one the Fourier
parameterization is applied for the local density distribution.
The latter method is very efficient and reliable in the
determination of the smectic A structure in bulk systems [21],
but it is not tested for confined systems. Therefore, we use the
following Fourier ansatz for the density profile both in bulk and
confined studies:

ρ(z) =
n∑

i=0

ρi cos(iqz), (10)
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where ρi is the i th order Fourier coefficient and q =
2π
d is the wavenumber. Note that zeroth order Fourier

coefficient is just the averaged number density (ρ0 =
1
d

∫ d
0 dz ρ(z)). After substitution of equation (10) into (9)

and using the orthogonality properties of the cosine functions
(
∫ d

0 dz cos(iqz) cos( jqz) = d
2 (δi j + δ j0δi0)) it can be shown

that the Fourier coefficients obey the following set of coupled
nonlinear equations:

ρi = (1 + δi,0)
exp[βμ]

2d

∫ d

0
dz cos(iqz)

× exp

[
−D2π

∫ z+b(z)

z−a(z)
dz1ρ(z1)

]
(i = 0, . . . , n).

(11)

The solution of the above set of equations at a given chemical
potential provides the equilibrium Fourier coefficients and
density profile of the system. In the case of the bulk
smectic phase one further step is required which determines the
equilibrium smectic period (discussed later). The advantage
of the Fourier expansion over the iterative method is that
the number of unknown Fourier coefficients (n + 1) can be
substantially lower than the number of discrete density points
of the iterative method in the numerical implementation. In
addition, the integrals of the cosine function can be performed
analytically. The solution of equation (11) at a given chemical
potential shows that ρi decays rapidly with increasing i .
For example in the bulk calculations it has been more than
sufficient to cut the series at the 10th shell, i.e. n = 10, which
guarantees that |ρn| < ε, with ε = 10−4. Regarding the
confined case, the requested number of Fourier coefficients
to get a reliable density profile and grand potential depends
strongly on the pore width and the chemical potential. In
practice, n increases with the pore width and the chemical
potential. We have determined the value of n by the condition
|ρn| < ε. In addition we have made some checks on the Fourier
method by comparing the numerical solution of equation (9)
with that given by equation (11). For very wide pores and high
chemical potentials we need about 70 Fourier coefficients to
reproduce the numerical density profile accurately. In the case
of the iterative solution the number of discrete points of the
local density and the number of corresponding equations for
the density profile depends linearly on the pore width. For
example in the wide pore of d/L = 100 with grid size of
�z = 0.01L, equation (9) results in 10 001 coupled equations
for the local density. This means that the number of equations
can be significantly reduced by using the Fourier method.

In the framework of the Fourier method, the grand
potential, which is the minimum of the grand potential
functional, can be expressed as a function of ρi (i = 0, . . . , n)
by substituting equation (10) into (8)

ω = 1

2π

n∑
i=0

ρi

∫ 2π

0
dϕ cos(iϕ)

{
ln

( n∑
j=0

ρ j cos( jϕ)

)
− 1

}

+ D2π

2

n∑
i, j=0

ρiρ jwi j − βμρ0, (12)

where ϕ = 2π
d z.

The difference between the bulk and the confined system
comes from the wi j function. For bulk system only the
diagonal elements of wi j are nonzero

wi j = sin(iq L)

iq L
(δi j + δi0δ j0), (13a)

while for the slit pore wi j reads

wi j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2d − L

d
, for i = j = 0

4

q2Ld

cos2( jq L/2) − cos2(iq L/2)

j 2 − i 2
,

for i �= j

sin(iq L)

iq L

d − L

d
, for i = j �= 0.

(13b)

Note that if we consider q and d as independent variables,
which is not the case here, equations (13a) and (13b) would
be identical in the limit of d → ∞. We can see from
equations (12) and (13) that only the calculation of the
ideal free energy term requires a single numerical integration
in Fourier method, while even double integrals have to be
performed numerically in the iterative procedure to obtain the
grand potential (see equation (8)). From the numerical point
of view there is one important difference between the bulk
and the confined systems. In the slit pore the wall-to-wall
separation is fixed in advance, while the smectic period of the
bulk system is that which minimizes the grand potential. So
the variable d in the Euler–Lagrange equation, equation (9), is
a fixed parameter for the confined system but a free parameter
for the bulk smectic phase. In order to get the grand potential
of the bulk smectic system for a given chemical potential
using the iterative procedure, the density profile and the grand
potential are determined as functions of the smectic period
from equations (8) and (9). Then, the minimum of the grand
potential gives the equilibrium grand potential, the smectic
period and the corresponding density profile. This procedure is
easier in the Fourier method, because the minimum condition
of the grand potential with respect to the smectic period is
directly obtained from δω

δq = 0. Using equation (12) we
get a simpler equation for the equilibrium wavenumber in the
Fourier method:

n∑
i, j=0

ρiρ j
∂wi j

∂q
= 0. (14)

Numerical solution of equations (11) and (14) provides n + 1
equilibrium Fourier coefficients and the wavenumber at a given
chemical potential. After this, we can compute the equilibrium
grand potential of the system from equation (12). In summary,
the number of unknowns is n + 1 for the confined study,
while it is n + 2 for the bulk study in the Fourier method.
We can see that it is straightforward to implement the Fourier
method for both confined and the bulk system. However the
efficiency of the Fourier method depends on the suitability of
the ansatz given by equation (10), which is clearly approved
for the truly periodic smectic phase but might be more delicate
in cases where the density profiles exhibit damped oscillatory

4
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Figure 1. Sketch of the nematic phase (left side) and the smectic A
phase (right side) of the system of parallel hard cylinders.

behaviour with rapidly changing amplitudes and where the
structure is not exactly periodic. Moreover, a set of n + 1
or n + 2 plausible initial values has to be set before the
calculations. In contrast, e.g. Picard’s iteration method is very
robust and gives a solution practically regardless of the initial
density profile and it can be used for both confined and semi-
infinite systems. The drawback of the iterative method is the
inefficiency for bulk phase calculations.

At the end of this section we explain how to determine
the phase boundaries. Let us assume that two phases
(structures), α1 and α2, are in coexistence at a given chemical
potential. This implies that there are two different solutions of
equation (9) (equation (11)) using the iterative method (Fourier
method). These structures are in coexistence if the grand
potentials of the phases α1 and α2 are equal, i.e. ω(α1) =
ω(α2). In the bulk system such a condition corresponds to
equality of pressures. In confined systems the same condition
has to be applied in order to guarantee the minimum condition
of the grand potential for any pore width. We use the ω(α1) =
ω(α2) condition for the location of the layering transition pore
width at which the two layered structures have the same grand
potential.

3. Results and discussion

Prior to study of the structure and phase behaviour of perfectly
aligned hard cylinders in a slit pore we revisit the bulk
behaviour of the model. In the bulk phase the system exhibits
nematic, smectic A and solid phases (see figure 1). The solid
phase is not considered in our study. Fourier expansion results
of the Onsager theory for the nematic–smectic A (N–S) phase
transition are presented in figure 2. We only show the first and
second derivative of the grand potential, which are determined
according to the procedure in the appendix. The presence of a
kink in the first derivative of the grand potential with respect
to the chemical potential suggests that the transition is of the
second order (figure 2(a)). Examining the second derivative
of the grand potential with respect to the chemical potential,
we can see that a clear discontinuity is present (figure 2(b)).
Therefore the N–S transition of hard cylinders is of second
order on the level of Onsager theory. Since the first derivative

Figure 2. Chemical potential dependence of the derivatives of the
grand potential in the region of the nematic–smectic A phase
transition of the bulk hard cylinder system. The first and second
derivatives of the grand potential density are shown in (a) and (b),
respectively. The plotted quantities are defined as ω′ = dω∗

dμ∗ and

ω′′ = d2ω∗
dμ∗2 where ω∗ = β�v0/V is the dimensionless grand

potential density, while μ∗ = βμ + ln v0 is the dimensionless
chemical potential. The volume of a cylinder is v0 = D2π L/4. The
vertical dashed line shows the location of the nematic–smectic A
phase transition.

of the grand potential is proportional to the mean density
(see equation (A.2)), we can easily read the critical value of
the packing fraction and that of the chemical potential from
the position of the kink in figure 2. The following results
are obtained for the packing fraction (ηN−S), the chemical
potential (μN−S) and the smectic period (dN−S) of the N–
S phase transition: ηN−S = ρN−Sv0 ≈ 0.5754, μ∗

N−S =
βμN−S + ln v0 ≈ 4.0507 and d∗

N−S = dN−S/L ≈ 1.3983,
where v0 = π

4 L D2 is the volume of the cylinder. Note that

5
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Figure 3. Density profiles and Fourier spectra of hard cylinders between two parallel hard walls. Comparison of Picard’s iteration and Fourier
expansion methods for three different structures: a strongly damped structure at μ∗ = 3.5 (upper left panel), a weakly damped structure at
μ∗ = 4 (middle left panel) and a smectic-like structure at μ∗ = 4.5 (lower left panel). Black curves are the iteration, while the red curves are
Fourier expansion results. The Fourier expansion is truncated at n = 14 for μ∗ = 3.5, while it is done with n = 20 for μ∗ = 4 and 4.5. Right
panels show the Fourier spectrum of the corresponding structures. The Fourier coefficients are dimensionless: ηi = ρiv0.

these results can be extracted from bifurcation analysis, as
well [17]. MC and other theoretical studies also confirm the
second order nature of the N–S phase transition [18–20]. Based
on a comparison with [17–20] we can say that even though the
Onsager theory is very approximate, it is a reasonable theory
for the system of parallel hard rods. In the case of freely
rotating hard rods the interplay between the orientational and
packing entropies gives rise to a weak first order N–S phase
transition [4], which slightly changes the scenario.

Now we continue with the fluid confined by two parallel
hard walls and we address the issue of what is the effect of
the confinement on the phase behaviour of the parallel hard
cylinders. In the first step it is worth examining the density
profiles for some special chemical potentials at a given pore
width using both iterative and Fourier methods. Figure 3 shows
three different density profiles in the pore of d/L = 20;
the first one is taken at a chemical potential corresponding
to the nematic phase in bulk, the second one is close to the
bulk N–S phase transition, while the third one corresponds
to the bulk smectic phase. To see the difference between the
iterative and Fourier methods, the accurate iterative and the
inadequate Fourier representation results are shown together.

At the nematic chemical potential (μ∗ = 3.5) one can see
that the wall–particle interaction induces an inhomogeneous
density profile close to the walls and the nematic structure (no
positional order) only survives in the middle of the pore. At
the walls, the adsorption of the particles is very strong and
a damped layered structure is developed. At μ∗ = 4 the
bulk phase is still nematic, while the confined system shows
a very ordered layered structure. No sign of the homogeneous
structure can be seen even in the middle of the pore, instead
a weak damped oscillation propagates into the centre of the
pore. This means that the walls favour the layered formation
against the nematic phase as a consequence of packing effects
in the vicinity of the walls. It suggests the hypothesis that
the smectic phase can be stabilized by the presence of walls.
Finally, at the highest chemical potential, μ∗ = 4.5, the
density profile of the confined system looks like the structure
of a real smectic A phase. We can also see from figure 3
that the iterative and the Fourier methods agree very well.
The differences are due to the fact that the Fourier results
are determined with unreliable truncation of the Fourier series
(equation (10)). The effect of inadequate truncation is the
overestimation of the oscillatory behaviour of the local density.

6
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Figure 4. Visual illustration of two coexisting phases exhibiting
three (upper panel) and two (lower panel) layers of the fluid in
confinement. The systems have identical chemical potentials and
wall-to-wall separation.

It may produce even unphysical (negative) values for the
density, as seen at the highest chemical potential. The right
panel of figure 3 highlights the chemical potential dependence
of the Fourier coefficients. Interestingly, the spectrum does not
show monotonically decaying behaviour, it oscillates between
positive and negative values and dies out slowly. It shows
that even 20 terms can be sufficient to get the proper density
distribution for μ∗ = 3.5, while 35 terms are needed for
μ∗ = 4.5. In general, the number of coefficients needed in the
Fourier method increases both with pore width and chemical
potential. Hence, a thorough analysis of the truncation of
the series is always essential to find the optimum number of
Fourier coefficients in the calculations. Since the two methods
produce the same results, from now on we only mention the
used method if it is relevant.

The grand potential exhibits very peculiar behaviour with
varying pore width. At the chemical potentials of the bulk
nematic phase the grand potential is a uniquely invertible
function of the pore width and shows oscillatory behaviour.
However, it becomes discontinuous, and two solutions of
equation (9) can coexist in the smectic regime of the chemical
potential. One solution corresponds to a structure with i
layers, while the other one has i + 1 layers (figure 4 shows
a visualization of such a situation). To find both solutions
equation (9) is solved upon expansion and compression of
the pore, taking advantage of the previously obtained density
profile for the next pore width as a starting configuration. In

Figure 5. Grand potential density (ω∗) and average number density
(η0) as a function of wall-to-wall distance (d∗) for μ∗ = 4.5. The
curves are obtained by increasing and decreasing the pore width. In
some narrow ranges of the pore width the expansion and
compression procedure produces different density profiles. The
intersection points of the expansion and compression branches of the
grand potential determines the coexistence between two
configurations with i and i + 1 completed layers.

this way we obtain the expansion and compression curves
of the grand potential. Figure 5 presents our results for the
grand potential and the average packing fraction. We can
see that in some intervals of the pore width two branches
exist. The branch with the lower (higher) grand potential
represents a stable (metastable) phase. The intersection of the
two branches in the ω–d plane represents phase coexistence
between two smectic-like configurations with i and i + 1
periods. The reason why there are two branches is due to
the competition of two characteristic length scales. One is
the period of the smectic-like structure, while the other is the
pore width. An accommodation problem arises when the ratio

7
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Figure 6. Density profiles of the coexisting S8 and S9 phases for μ∗ = 4.5. The inset shows the average local packing fractions of the
coexisting phases, which is defined as ηav(z) = v0

a(z)+b(z)

∫ z+b(z)
z−a(z) dz ρ(z).

of the pore width and the smectic period is half way between
two successive integer numbers, i.e. it is not possible to pack
integer numbers of layers between the two walls. Therefore
there are regions of the pore width where neither i nor i + 1
layers can be packed efficiently into the pore. The result of
the commensuration effect is a phase transition taking place
between two layered structures. Figure 6 presents such a case.
One profile consists of 9 layers, which corresponds to 8 smectic
periods, while the other has 10 layers (9 smectic periods).
We identify the density profiles with the number of periods
and use S notation for layered structures. Therefore, S8–S9

phase coexistence can be seen in figure 6. Both S8 and S9

density profiles are very ordered in the vicinity of the walls,
i.e. the adsorption effect of the walls is very strong. To see
clearly the packing of the rods, we define an average local
packing fraction through averaging the local density only in
the interaction region of the pair potential as follows:

ηav(z) = v0

a(z) + b(z)

∫ z+b(z)

z−a(z)
dz ρ(z). (15)

It is easy to prove that ηav(z) corresponds to the packing
fraction in the homogeneous limit. The inset of figure 6
shows that the average local packing is very high and close
to the close packing limit at the walls. We can also see
that ηav(z) has no maximum at the density peaks but in the
interstitial regions. This special property of ηav(z) reflects
that the particles staying between two layers interact with the
particles of both layers, i.e. the particles of the interstitial

regions stay in a very dense environment. Due to the very
high value of ηav(z) at the wall, the possibility of forming
solid layers is quite high at μ∗ = 4.5, as shown by Steuer
et al [15]. From the location of the intersection points in
the ω − d plane, we can construct the phase diagram of the
confined hard cylinders (see figure 7). Only layering transitions
are observed and no N–S phase transition takes place (see the
discussion further on). The coexistence curve between the
Si and Si+1 structure is almost vertical, and bounded by a
lower critical point. The appearance of a lower critical point
can be attributed to increasing permeability between the layers
and adding/removing a layer has a lower energy cost with
decreasing chemical potential. Very narrow pores suppress
any phase transitions due to steric effects. For example the
minimal value of chemical potential at which the layering
transition takes place between S1 and S2 structures is observed
at μ∗ = 5.556 with pore width d∗ = 2.5. This value
of μ∗ is well above the N–S critical chemical potential of
the bulk phase. We can also see that the critical chemical
potential (mean density) goes towards the bulk μN−S(ρN−S)

with increasing pore width. At the limiting case of infinite
wall separation, an infinite number of layers exists, which is
equivalent to a stabilization of the smectic A phase. This
can be also seen from the behaviour of the coexisting mean
densities with increasing wall separation in figure 7(b). At this
point it is worth mentioning that the inclusion of the effect
of orientational entropy does not change the scenario in the
smectic region of the chemical potential, as the confined freely
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Figure 7. Phase diagram of the system of hard cylinders confined by
two hard planar walls. The curves show the phase coexistence
between Si and Si+1 smectic-like structures in chemical
potential-wall-to-wall separation (a) and chemical potential mean
density (b) planes. The values of i range from 3 up to 20. Each
layering transition curve is bounded by a lower critical point. With
increasing i the chemical potential and the mean density of the
critical point moves smoothly down to the bulk values of chemical
potential and density (μ∗

N−S and ηN−S shown as dashed lines) of the
nematic–smectic A phase transition.

rotating rods also show layering transition and have lower
critical points [12]. However, the orientational freedom has
a strong effect on the isotropic–nematic and nematic–smectic
A capillary phase transitions [13]. The influence of the shape
anisotropy on confined systems and the link between layering
transition and capillary phase transitions are studied in depth
in [13]. Now we turn to the issue of confinement on the second
order N–S phase transition.

Figure 8. Density profiles of the system of hard cylinders in contact
with a hard plane wall at three different chemical potentials:
(a) μ∗ = 3.96, (b) μ∗ = 4.0384 and (c) μ∗ = 4.0507.

To understand the behaviour of a fluid confined between
two hard walls it is essential to gain some insight into the
wetting properties of the fluid in the presence of a single
wall. We present our numerically obtained density profiles of
parallel cylinders in a semi-infinite system, where the particles
are subjected to the following single wall external field:

φ(z) =
{

∞, z < 0

0, z � 0.
(16)

Note that the Fourier method cannot be applied in this case
because the system is non-periodic. On the contrary there is
no problem in using the iteration method; one only needs to
be careful in specifying the system size, d , which should be
large enough not to produce any relevant finite size effects. In
our computations d/L = 1000 has been used. Figure 8(a)
shows the density profile for μ∗ = 3.96, the value of which
is somewhat smaller than the bulk nematic–smectic chemical
potential as obtained from the Onsager theory. We observe
a highly oscillating structure close to the wall, associated
with the creation of the smectic-like layers, the amplitudes
of which are however rapidly damped and beyond a distance
about 20 molecular units the density profile is almost constant,
i.e. a perfect nematic phase is achieved. By approaching the
nematic–smectic coexistence value of the chemical potential,
the smectic layers propagate further from the wall, see
figure 8(b), and for μ∗ = μ∗

N−S (figure 8(c)) the wall is
completely wet by smectic-like modulation. In order to analyse
this behaviour in more detail, we define the following order
parameter:

S = max
g

S′(g), (17)

with

S′(g) = 1

g

∫ d

0
dz ρ(z) cos

(
2π

g
z
)

, (18)

where g is a characteristic length. It is known that the
above function reflects the oscillatory character of a given
density profile, see [15], where a similar order parameter
was used, for more details. As an example, we plot S′(g)

9
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Figure 9. Hard cylinders in contact with a single wall for μ∗ = 4.
The S′ parameter is plotted as a function of g∗. The pair of S′ and g∗
values at which S′ has a maximum corresponds to the order
parameter and the mean layer spacing (smectic period), respectively.

as a function of g for μ∗ = 4, (see figure 9). The
function exhibits a sharp maximum at g/L = 1.46. This
value is slightly higher than the bulk smectic period. The
location of the maximum is an interesting by-product of this
analysis and corresponds to the mean layer spacing between
two neighbouring layers. Figure 10 shows the chemical
potential dependence of g for the interval close to the bulk N–
S equilibrium. As expected, the mean period decreases with
an increase of the chemical potential and approaches the bulk
N–S limit, i.e. g(μ → μN−S) = dN−S. In order to get more
insight into structure of the fluid next to wall, we explore the
chemical potential dependence of the order parameter obtained
from equations (17) and (18), see figure 11. We observe a
continuous increase of S with an increase of the chemical
potential; for μ∗ → μ

∗−
N−S the order parameter diverges, which

corresponds to the formation of the smectic phase throughout
all the system. The inset of figure 11 clearly shows that S
diverges logarithmically as μ∗ → μ

∗−
N−S. A fit is made by

S = A+B log(μ∗
N−S−μ∗), where the values of the parameters

are A = 0.7453 and B = −0.711. These results indicate that
the bulk N–S phase transition transforms into a wall induced
critical wetting transition.

Lastly, we address the issue of the N–S phase transition
of the hard parallel cylinders confined by two hard walls.
As, according to our calculations above, the corresponding
phase transition in the bulk phase is of the second order, the
relevant quantity to be analysed is the second derivative of the
grand potential presented in the appendix. Figure 12 displays
the second derivative of the grand potential for four different
sizes of the pore. In figure 12(a) we consider the case of a
single wall, i.e. the infinitely large pore. We observe a clear
discontinuity at μ∗

N−S corresponding to the critical wetting
by smectic transition (compare with figure 2(b)). For the
remaining pores we observe a still rather harsh but continuous
change from the nematic regime with just several layers to the
regime where the whole pore is filled by the layered structure.
One can still speculate about the small discontinuity in the

Figure 10. Hard cylinders in contact with a single wall: mean layer
spacing as a function of the chemical potential. The solid curve is
added as a guide to the eye. The dotted horizontal line indicates the
smectic period at the bulk nematic–smectic A phase transition.

Figure 11. Chemical potential dependence of the order parameter
(S) in the presence of a single wall. The inset shows a logarithmic
divergence of the order parameter with increasing chemical potential
(μ∗ → μ

∗−
N−S). At μ

∗−
N−S the wall is completely wet by the smectic

structure. The dotted vertical line indicates the position of the bulk
nematic–smectic A phase transition.

case of d∗ = 500, but taking into account the dimension of
such a pore one can conclude that the presence of the second
wall destroys the second order N–S transition. As a result we
can say that only the layering transition exists in the slit-like
pore. To see other effects, such as the capillary nematization
and smectization, the inclusion of orientational freedom is
essential.

4. Summary and conclusion

In this work we have studied the influence of confinement on
the structure and phase behaviour of an anisotropic hard body
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(a)

(c)

(b)

(d)

Figure 12. Hard cylinders between two confining hard walls. The second derivative of the grand potential as a function of chemical potential
is shown at different wall-to-wall separations. For the definition of ω′′ see the caption of figure 2.

fluid. We have adopted perhaps the simplest model, which
is the fluid of parallel hard cylinders confined between two
parallel hard walls with the assumption of perfect homeotropic
anchoring. Formulating Onsager’s second virial theory in
a form applicable for both bulk and confined systems, we
obtained the following results.

• In the case of a single hard wall the system possesses
only one free parameter, which is the chemical potential.
The presence of a single wall induces a layered structure
adjacent to the wall due to the packing effect. For the
chemical potential well below its bulk N–S critical value
μN−S, the smectic phase is unstable; there is only a
microscopic smectic-like film adjacent to the wall, the
width of which continuously grows with increasing μ.
For μ → μN−S the thickness of the smectic-like layer
logarithmically diverges and the system exhibits a critical
wetting transition. By the term ‘wetting’ we mean a filling
of the whole system by the smectic phase. As the wetting
transition is of the second order, no prewetting transition
(the coexistence between thin and thick smectic films)
appears.

• If the fluid is confined between two parallel hard walls,
the scenario changes. Now the width of the pore is
an additional parameter to the chemical potential. The
presence of the second wall suppresses the second order
N–S transition and first order layering transitions are
produced. The corresponding phase diagram involves a
semi-infinite sequence of transition lines corresponding

to the coexistence between two structures of completed
i and i + 1 layers. The layering transition curves are
accompanied by lower critical points. Interestingly the
critical chemical potential converges to μN−S in the limit
d → ∞. The commensuration effect between the layer
spacing of the bulk smectic structure and the pore width
gives rise to the first order layering transition.

• Our results show that the term ‘smectic phase’ of confined
systems is not obvious. In the bulk, the smectic phase is
uniquely defined exhibiting a spatially oscillating density
distribution with given amplitude and period, whereas
the nematic state does not possess such a structure,
i.e. it is spatially homogeneous. Therefore the N–S
phase transition can be easily quantified by the Fourier
coefficients of the density profiles. On the other hand,
confined fluids are always spatially inhomogeneous due
to the influence of the external field, which does not allow
us to distinguish the smectic and nematic phases. For a
fixed pore width, we observe a continuous development
from a ‘less wavy’ structure to a more ordered one with
increasing chemical potential. However, no abrupt change
is seen even in the second derivative of the grand potential
with respect to the chemical potential, which excludes the
possibility of first and second order phase transitions. If
we associate the reciprocal value of the pore width with
the temperature, the situation is analogous to the transition
from a low density gas-like state to a high density liquid-
like state by following a supersaturated path. We observe
that the critical value of the reciprocal pore width is zero.

11



J. Phys.: Condens. Matter 22 (2010) 175002 A Malijevský and S Varga

It is worth noting that our model system in contact
with one or two walls resembles the phase behaviour of
confined simple fluids. There are close relations between
the terms smectic–liquid, nematic–gas, wetting–smectization
etc expressions, because the order parameter defined by
equations (17) and (18) plays the role of the adsorption. There
is, however, one important difference. Whereas the presence of
a hard wall leads to a drying (formation of a less ordered phase)
in the case of simple fluids, the hard wall induces a smectic-
like, i.e. more ordered, phase in our hard cylinder model. The
difference stems from the fact that the phase behaviour of our
model system is purely entropy driven.

The main output of our study is that even the very simple
system of parallel rods can be applied to examine the complex
phase behaviour of an anisotropic fluid in the presence of an
external field. We believe that the understanding of phase
behaviour of this model is a step forward to shedding some
light on the essential physics of confined anisotropic fluids.
The next steps consist of an investigation of the role of the
orientational entropy, the presence of a solvent, attraction
forces etc. These problems will be the subject of our future
studies.
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Appendix. Determination of the first and second
derivative of the grand potential

In order to determine the order of the phase transition in the
grand canonical ensemble, we need to examine the behaviour
of the first and second derivatives of the grand potential with
respect to the chemical potential. Due to the chemical potential
dependence of the local density, the first derivative consists of
two terms

ω′ = 1

d

∫ d

0

δω

δρ(z)

∂ρ(z)

∂μ
dz + ∂ω

∂μ
. (A.1)

In equilibrium the first term of (A.1) vanishes as a consequence
of the Euler–Lagrange equation ( δω

δρ(z) = 0). The second term
is just the direct derivative of equation (8) with respect to the
chemical potential. Therefore, the first derivative of the grand
potential density is proportional to the mean density of the
system

ω′ = −β

d

∫ d

0
dz ρ(z) = −βρ0. (A.2)

In the case of the first order phase transition ω′ is
discontinuous, while the second order phase transition would
only give rise to a kink in ω′. To see more clearly the
order of the phase transition, it is customary to determine the

second derivative of the grand potential. One can see from
equation (A.2) that only the derivative of the local density
with respect to chemical potential is required to get ω′′. From
equation (9) one can prove easily that

∂ρ(z)

∂μ
= ρ(z)

(
1 − D2π

∫ z+b(z)

z−a(z)
dz′ ∂ρ(z′)

∂μ

)
, (A.3)

and the derivative of equation (A.2) is

ω′′ = −β

d

∫ d

0
dz

∂ρ(z)

∂μ
. (A.4)

Equation (A.3) is a self-consistent equation for ∂ρ(z)
∂μ

and can
be solved by iteration once the equilibrium density profile is
determined. The advantage of the iterative solution for ω′′
is that equations (10), (A.3) and (A.4) enable us to calculate
the second derivative of the grand potential at any chemical
potential, which is very crucial for the precise location of the
phase transition. In addition, there is no need to use finite
difference methods for the approximate determination of the
first and second derivatives. We use equation (A.4) for the
location of the second order phase transition. The discontinuity
of ω′′ determines the chemical potential where the second order
transition takes place.
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